воскресенье, 26 декабря 2010 г.

Важнейшие виды магматических пород и их строительные свойства

Подразделение изверженных пород по содержанию  на кислые, средние и основные имеет практическое значение. Так, с уменьшением содержания SiO2, т. е. по мере перехода от гранитов к габбро или от порфиров к диабазам, возрастают плотность, прочность, ударная вязкость, понижается температура плавления этих пород, а цвет становится темнее.
Кроме перечисленных в табл. 2.2 в природе существуют переходные породы, напримергранопорфиры, граносиениты, габбродиабазы и т.д.
 Гранит и близкие к нему переходные породы (гранитоиды) состоят из кварца, полевых шпатов, слюды, иногда роговой обманки или авгита. Это самые распространенные из всех магматических пород (до 2/з всех глубинных пород). Цвет породы определяется цветом полевых шпатов (от серого до красного разных оттенков). Имея высокие показатели плотности и прочности при сжатии (см. табл. 2.2), гранит является хрупким, так как его прочность при растяжении в 40...60 раз меньше прочности при сжатии. У гранита малое водопоглощение — менее 1 %, высокая морозостойкость — более 200 циклов, хорошая сопротивляемость истиранию, высокая теплопроводность. Граниты хорошо обрабатываются (обтесываются, шлифуются и полируются). Наиболее высокими показателями свойств обладают мелкозернистые граниты. Гранит используют для облицовки монументальных зданий и гидротехнических сооружений, плит для полов, ступеней, материалов для дорог, крупного заполнителя для бетонов, бутового камня и т. п.
 Сиенит в отличие от гранита не содержит кварца, а состоит в основном из полевого шпата и темноокрашенных минералов (до 15 %). По внешнему виду сиенит похож на гранит, но в нем выражена среднезернистая структура, а окраска несколько темнее. Свойства сиенита близки к свойствам гранита, но он менее стоек к выветриванию и легче обрабатывается.

 Диорит примерно на 3А состоит из полевых шпатов и до 25 % содержит темноокрашенных минералов. Диорит характеризуется мелко- и среднезернистым строением и серо-зеленым или темно-зеленым цветом. По строительным свойствам диорит не уступает гранитам, обладает высокой ударной вязкостью и хорошо полируется. Чаще всего диорит применяют при облицовочных работах и в дорожном строительстве.
 Габбро состоит в основном из полевого шпата {до 50%) и темноокрашенных минералов, чаще авгита, а также роговой обманки, оливина. Габбро представляет собой поликристаллическую породу от темно-серого до черного цвета. Габбро, состоящее из известково-натриевого плагиоклаза — Лабрадора, называется лабрадоритом. Характерной особенностью этой породы является ирризация Лабрадора (синего, голубого, золотистого цветов) на плоскостях спайности или поверхности полированной породы. Габбро применяют в виде штучных изделий для облицовок, дорожных покрытий, щебня для бетонов и других целей. Лабрадорит используют для особо ценных облицовок (например, он применен при строительстве Мавзолея В. И. Ленина).
 Порфиры — излившиеся горные породы, близкие по химическому составу к гранитам (кварцевый порфир), сиенитам (бескварцевый порфир), диоритам (порфирит) и характеризующиеся порфировой структурой. Вследствие неоднородного строения порфиры менее устойчивы к выветриванию, слабее сопротивляются истиранию, чем глубинные породы. Другие строительные свойства пор-фиров близки к свойствам глубинных пород.
Трахит — излившаяся порода, имеющая тот оке минеральный состав, что и сиениты, но более пористая, так как отвердевала на поверхности земли. Его применяют в качестве стенового материала и щебня для бетонов. Разновидность трахита — бештаунит — используют как 1 заполнитель в кислотостойких бетонах.
 Андезит — аналог диорита, но отличается от них порфировой структурой. Плотные андезиты применяют в виде кислотоупорных плит и щебня для кислотоупорного бетона.
Диабаз по минеральному составу аналогичен габбро. Окраска — от темно-зеленой до черной. Структура кристаллическая с зернами разной крупности, иногда порфировая. Диабазы,, особенно мелкозернистые (например, онежские), имеют высокую, прочность — до 450 МПа, большую ударную вязкость и малую истираемость, способные раскалываться на куски сравнительно правильной формы. Используют диабаз для изготовления дорожных материалов (брусчатки, шашки, бортового камня), щебня для бетона, иногда для облицовочных работ, а также в качестве сырья для каменного Литья и кислотоупорных изделий.
 Базальт (как и диабаз, аналог габбро) представляет собой плотную тяжелую породу, имеющую скрытокристаллическое или стекловатое, а иногда порфировое строение. Базальт имеет темно-серый или почти черный цвет, характеризуется высокой прочностью до 500 МПа. Вследствие наличия в стекловатой массе трещин и пор, возникших при остывании магмы, или при порфировой структуре прочность базальтов может резко колебаться, иногда снижаясь до 100 МПа. Большая твердость и хрупкость базальтов затрудняет их обработку. Их широко используют как дорожный материал, в качестве щебня для бетона, для кислотоупорных материалов, а также каменного литья и производства минеральной ваты.
 Порошкообразные частицы (до 1 мм) называют вулканическими пеплами, крупностью до 5 мм — вулканическими песками, а от 5 до 30 мм (реже крупнее) — пемзой. Эти породы имеют пористое строение, небольшую плотность и малую теплопроводность — 0,13...0,23 Вт/(м-°С), прочность при сжатии — 2...3 МПа.
Пемзу и пемзовые пески используют как заполнитель в легких бетонах, при производстве тепло- и звукоизоляционных материалов и в качестве шлифующего материала. Так как эти породы состоят из аморфного кремнезема и вулканического стекла, то в тонкоизмельченном виде их используют в качестве активных добавок к минеральным вяжущим веществам (см. гл. 5).
 Вулканические туфы образовались в результате последующего уплотнения, спекания или цементации природными цементами вулканического пепла. К наиболее уплотненным вулканическим туфам относятся трассы. Если же при извержении к жидкой лаве примешивается значительное количество вулканических пеплов и песков, то образуются породы, называемые туфовой лавой. Большинство вулканических туфов.и туфовых лав имеет пористое строение, небольшую плотность и малую теплопроводность. Эти породы обладают разнообразной окраской и легко поддаются технологической обработке. Одним из их типичных представителей является артик-ский туф, добываемый в Армении. Артикский туф имеет розовато-фиолетовую окраску, плотность 750... 1400 кг/м3, предел прочности при сжатии 6... 10 МПа, теплопроводность около 0,34 Вт/(м-°С); достаточную морозостойкость.
Туфы применяют для кладки   стен в виде   пиленых камней правильной формы и бута, а в дробленом виде - в качестве заполнителей для легких бетонов.

вторник, 16 ноября 2010 г.

Химический и минеральный составы магматических пород

Большинство магматических пород, применяемых в строительстве, содержит химические соединения трех типов — кремнезем, силикаты и алюмосиликаты в виде породообразующих минералов (кварц, полевые шпаты, слюда и железисто-магнезиальные минералы). Каждый минерал кроме химического состава характеризуется определенными н различными физическими свойствами (плотностью, твердостью, прочностью, стойкостью, наличием спайности, блеском, цветом и др.). Поэтому преобладание в породе тех или других минералов, их размеры и расположение отражаются на строительных свойствах каменного материала.
 Кварц — диоксид кремния (SiO2) в кристалликеской форме. Он отличается высокой плотностью — около 2650 кг/м3, твердостью — 7, прочностью при сжатии—-до 2000 МПа и стойкостью. При выветривании магматических пород стойкие зерна кварца не разрушаются и образуют пески. Кварц обладает несовершенной спайностью, имеет различную окраску (бесцветную, желтую, молочную) и стеклянный блеск. При обычной температуре кварц не взаимодействует с кислотами (кроме плавиковой и горячей фосфорной) и щелочами. При повышенных температурах в среде насыщенного пара кварц взаимодействует со щелочами, например с Са(ОН)2, образуя гидросиликаты (см. гл. 8). При нагревании до 575 и 870 °С он переходит в другие кристаллические формы, скачкообразно увеличиваясь в объеме. Плавится кварц при 1710 °С и при быстром охлаждении расплава дает кварцевое стекло.
 Полевые шпаты — алюмосиликаты, образовавшиеся в результате взаимодействия оксидов кремния и алюминия с оксидами щелочных металлов. Характерная особенность полевых шпатов — ярко выраженная спайность по двум направлениям. Наиболее распространенными разновидностями полевых шпатов являются: ортоклаз (прямораскалывающийся) K20-Al203-6Si02 и плагиоклазы (косораскалывающиеся) в виде альбита Na2O> •Al2O.v6SiO2 и анортита CaO-Al2O3-2SiO2 и их смеси. Полевые шпаты входят в состав большинства магматических (до 2/з их массы), многих метаморфических и некоторых осадочных горных пород. Они имеют различную окраску от белого и серого до розового и темно-красного цветов, плотность 2500...2760 кг/м3, твердость 6, предел прочности при сжатии до 170 МПа, температуру плавления 1170...1550 °С. Стойкость полевых шпатов значительно ниже, чем кварца. Под влиянием многократных резких смен температуры и воздействия воды и углекислоты полевые шпаты разрушаются (выветриваются).

Слюды — минералы с весьма совершенной спайностью в одном направлении, которые способны расщепляться на тончайшие упругие пластинки. По химическому составу они представляют собой водные алюмосиликаты сложного состава. Наиболее часто в составе горных пород присутствуют две разновидности слюды — мусковит (светлая алюминиевая слюда) и биотит (железисто-магнезиальная слюда темного цвета). Плотность слюд 2760,..3200 кг/м3, твердость 2...3, стойкость биотита меньше, чем мусковита. При выветривании биотит переходит в гидратированную разновидность слюды — вермикулит. Присутствие слюд в горных породах понижает прочность и стойкость породы, затрудняет ее шлифовку и полировку.
 Железисто-магнезиальные минералы за их темный цвет (от темно-зеленого до черного) называют темнокрашенными минералами. По химическому составу они представляют собой железисто-магнезиальные силикаты. Среди минералов этой группы наиболее распространенными породообразующими минералами являются амфиболы (чаще роговые обманки), пироксены (например, авгиты) и оливины. Минералы этой группы отличаются большой плотностью 3000...3600 кг/м3, твердостью 5,5.... 7,5, высокой ударной вязкостью, повышенной стойкостью против выветривания (кроме оливина). Эти же свойства они придают и содержащим их горным породам.

вторник, 28 сентября 2010 г.

Магматические породы

Классификация магматических пород.
Вследствие различия в химическом составе магм и различных условий и сред, в которых происходило остывание и затвердевание магмы, образовывались магматические породы разного строения и свойств — глубинные и излившиеся (плотные и пористые).
 Глубинные породы образовались в результате медленного и равномерного остывания магмы под большим давлением. Такие условия могли возникнуть в природе тогда, когда магма остывала и оставалась на большой глубине в земной коре. Эти условия благоприятствовали образованию в данной породе минералов с зернисто-кристаллической структурой, прочно сросшихся между собой без всякого цементирующего вещества (гранитное строение). Характерным для этих пород является массивность залегания, высокая плотность, а следовательно, большая прочность при сжатии, малое водопоглощение, значительная морозостойкость и высокая теплопроводность.
 Излившиеся породы образовались в результате менее равномерного и более быстрого охлаждения магмы при относительно быстром и неравномерном сбросе давления или даже при атмосферном давлении. Такие условия могли возникнуть в случае, когда магма остывала, излившись в виде лавы на поверхность земли или близко к поверхности. В этих условиях охлаждения крупные кристаллические зерна образоваться не успевали и возникали другие генетические структуры: скрытокристаллическая, стекловатая (аморфная), порфировая. Для порфировой структуры характерно неоднородное строение, когда в аморфную или мелкокристаллическую массу   включены   крупные   кристаллические   соединения — «вкрапленники», образовавшиеся в магме еще в глубинных слоях во время ее поднятия к поверхности земли.


Из сказанного видно, что из одной и той же магмы, но при различных условиях остывания могут образоваться глубинные и излившиеся породы (называемые аналогами), близкие по химическому составу, но отличающиеся друг от друга структурой и свойствами (см. табл. 2.2). В тех случаях, когда излившиеся породы образовались в большой толще, их строение и свойства сходны с глубинными породами. Если же образование излившихся пород происходило в сравнительно тонком слое и ближе к поверхности или на поверхности земли, то они имеют неоднородное, стекловатое и сравнительно пористое строение.
Разновидностью излившихся горных пород являются породы, образовавшиеся при извержении вулканов. В этом случае магма под большим давлением в виде раздробленных частиц выбрасывалась в атмосферу и, увлекаемая газами, очень быстро охлаждалась и падала на поверхность земли в виде затвердевших частиц и кусков разной крупности, образуя обломочные рыхлые породы пористой и стекловатой структуры (вулканический пепел, песок, пемза). Некоторая часть этих рыхлых пород слеживалась, спекалась или перемешивалась с лавой, образуя цементированные вулканические породы мелкопористого строения (вулканические туфы, трассы, туфовую лаву).

Водокольцевые вакуумные насосы одни из лучших в России.

воскресенье, 26 сентября 2010 г.

Природные каменные материалы

Общие сведения

Сырьем для получения природных каменных материалов служат горные породы.
Горные породы — это значительные по объему скопления минералов в земной коре, образовавшиеся под влиянием одинаковых условий.
Магматические породы (первичные)
Осадочные породы (вторичные)
Метаморфические   (видоизмененные) породы

 Минералы — это вещества, являющиеся продуктами физико-химических процессов, происходящих в земной коре, и обладающие определенным химическим составом, однородным строением и характерными физическими свойствами. В природе известно несколько тысяч минералов, но в образовании горных пород участвуют лишь около 50, их называют породообразующими. Горные породы могут состоять из одного минерала (мономинеральные) или нескольких (полиминеральные).

 Природные каменные материалы и изделия получают путем механической обработки горных пород, т. е. дробления, раскалывания, распиловки, отески, шлифовки (щебень, плиты, штучные камни, архитектурно-декоративные детали) или даже без обработки (песок, гравий). Свойства горной породы, из которой они получены, сохраняются почти полиостью. Строительные свойства горных пород и каменных изделий из них в значительной степени определяются химическим составом и физическими и механическими свойствами породообразующих минералов.
Большое влияние на свойства пород оказывает и их строение (структура), предопределяемое условиями образования каждой группы пород. Поэтому для оценки свойств и определения целесообразных условий обработки и применения природных материалов в строительных конструкциях необходимо познакомиться с составом и строением горных пород, из которых они получены. Знание этих вопросов важно и потому, что горные породы широко используют также в промышленностистроительных материалов в качестве сырья для изготовления вяжущих веществ (извести, гипса, цемента), искусственных каменных материалов (керамических, теплоизоляционных, бетонов и др.).

 Наша страна богата разнообразными и многочисленными видами горных пород. Такие районы, как Кольский полуостров и Карелия, Урал и Украина, Кавказ и Дальний Восток, содержат в своих недрах богатейшие запасы изверженных горных пород. Практически неисчислимые запасы осадочных горных пород (глины, песка, известняков, песчаников) и другого минерального сырья имеются почти в любом районе Советского Союза.
Широкий диапазон физико-механических свойств и распространенность природных каменных материалов обусловили их широкое применение в строительстве для различных целей. Их используют для возведения фундаментов и стен зданий, защитных и декоративных облицовок строительных конструкций, полов и лестниц, в качестве дорожных покрытий и т. п. Сотни миллионов кубометров каменных материалов в виде песка, гравия и щебня применяют ежегодно для изготовления бетонов, а также оснований при строительстве железных и автомобильных дорог.
Относительно большое разнообразие горных пород, применяемых в строительстве, удобно и логично изучать, если их классифицировать по условиям образования (генезису), ибо уже это дает известное представление об их строении и свойствах. Генетическая классификация разработана акад. Ф. Ю. Левинсон-Лессингом и А. П. Карпинским

Магматические (первичные) горные породы образовались при охлаждении и отвердевании магмы.

Метаморфические (видоизмененные) горные породы образовались в результате последующих изменений первичных и вторичных пород, связанных со сложными физико-химическими процессами, происходившими в земной коре.

среда, 15 сентября 2010 г.

Методика преподавания свойств строительных материалов

Методика преподавания курса строительных материалов вообще и их свойств, в частности, вытекает из основных задач, которые должен знать или уметь решать выпускник среднего специального учебного заведения строительного профиля. Изучению различных видов материалов и их свойств должна предшествовать классификация свойств на определенные группы, исходя из условий работы материалов и действующих на них факторов в реальных условиях эксплуатации. Важным методическим принципом при изложении основных свойств материалов является четкое определение каждого свойства, способ его оценки и раскрытие связи свойств с составом и строением материала, а также взаимосвязей свойств друг с другом. Это возможно осуществить, если опираться на сведения из курсов физики, химии, сопротивления материалов и других дисциплин. Такое изложение материала позволит учащимся избавиться от формального запоминания свойств, обеспечит их понимание. В будущем это поможет правильно и свободно пользоваться ГОСТами, ТУ,справочниками и другой нормативной литературой, где изложены конкретные данные о том или другом материале.
Для учащихся производственно-технических училищ и других учебных заведений, готовящих квалифицированных рабочих для строительства и строительной индустрии, при изложении материаловедения надо придерживаться схемы: состав — строение материала — свойства. Однако объем рассматриваемых групп материалов и их свойств должен выбираться исходя из профиля рабочей специальности. При этом выбранные свойства и материал в целом изучаются детально, с целью привития учащимся не только знаний, но и навыков умения оценки свойств материалов, их обработки и укладки в дело. Так, при подготовке каменщиков, штукатуров, бетонщиков подробнее изучаются такие свойства, как водопоглощение, водостойкость, теплопроводность, морозостойкость, удобоукладываемость и др., а при подготовке плотников, столяров необходимо научить учащихся умению оценивать влажность древесины и ее влияние на усушку и набухание, механические свойства, стойкость против гниения и т. д.

Особо необходимо обратить внимание на общие свойства всех материалов: пористость, плотность, прочность. Эти свойства должен знать и уметь определять учащийся любой строительной специальности, так как они являются основными свойствами при оценке материала и от них в значительной степени зависят физические, химические и технологические свойства.
Оценка технических свойств и сравнение материалов между собой возможны по показателям и параметрам, которые определяются при испытаниях материалов в полевых, заводских или лабораторных условиях. Поэтому теоретическое изучение свойств и методов их определения должно быть подкреплено практическими и лабораторными занятиями с использованием ГОСТов, ТУ и другой нормативной литературы.
Для успешного усвоения свойств материалов целесообразно также иллюстрировать важнейшие свойства материалов путем сопоставлений на лекции различных материалов и проведения простейших опытов. Для закрепления и контроля знаний рекомендуется составить специальные карточки с вопросами и ответами и использовать их при устном собеседовании с учащимися, а также применять обучающие и контролирующие машины.

Лучше химически стойкие вакуумные насосы в России производятся в компании Вакуумтех г. Казань. 

понедельник, 6 сентября 2010 г.

Технологические свойства стройматериалов

Технологические свойства характеризуют способность материала к восприятию некоторых технологических операций, изменяющих состояние материала, структуру его поверхности, придающих нужную форму и размеры, и т. п. Такие технологические свойства, как дробимость, распиливаемость, шлифуемость, гвоздимость и т. п., имеют важное практическое значение, ибо от них зависят качество и стоимость готовых изделий и конструкций. Для оценки технологических свойств некоторых материалов разработаны числовые показатели и методы их определения (например, дробимость каменных материалов, подвижность и удобоукладываемость бетонных смесей, укрывистость красочных составов и др.). Для большинства же материалов установлены лишь качественные характеристики технологических свойств.



вторник, 31 августа 2010 г.

Химические и технологические свойства стройматериалов. Химические и физико-химические свойства

Химические свойства характеризуют способность материала вступать в химическое взаимодействие с веществами внешней среды, в которой он находится, или сохранять свой состав и структуру в условиях инертной окружающей среды. Последнее связано с тем, что некоторые материалы за счет неустановившегося равновесия внутренних химических связей склонны к самопроизвольным структурным изменениям («старению»). Оба явления могут изменить первоначальные основные свойства материала, иногда улучшая (например, взаимодействие вяжущих веществ с водой), а в большинстве случаев ухудшая показатели свойств, что приводит к уменьшению срока нормальной службы конструкций или сооружений (например, разрушение бетонных конструкций агрессивными жидкостями и газами, старение пластмасс).

Некоторые из этих свойств (растворимость, кристаллизация) известны студентам изкурса химии, другие (твердение, старение, контракция, стойкость против гниения, горючесть, температура размягчения, скорость отверждения) будут описаны в соответствующих разделах книги. Здесь же ограничимся лишь описанием кратких сведений о дисперсности, адгезии, реологических свойствах и химической стойкости материалов.

Дисперсность — характеристика размеров твердых частиц и капель жидкости. Многиестроительные материалы (гипсовые вяжущие, цемент, глины, пигменты и т. п.) находятся в тонкоизмельченном (дисперсном) состоянии и обладают большой суммарной поверхностью частиц. Величина, характеризующая степень раздробленности материала и развитости его поверхности, называется удельной поверхностью sye — поверхность единицы объема (см2/см3) или массы (см2/г) материала.

Физико-химические свойства поверхностного слоя дисперсных частиц сильно отличаются от свойстк этого же вещества «в массе». Причина этого в том, что атомы (молекулы) вещества, находящиеся внутри материала, уравновешены действием окружающих атомов (молекул), в то время как атомы (молекулы) на поверхности вещества находятся в неуравновешенном состоянии и обладают особым запасом энергии. С увеличением удельной поверхности вещества возрастает его химическая активность (например, цемент с удельной поверхностью 3000...3500 см2/г через 1 сут твердения связывает 10... 13 % воды, а с удельной поверхностью 4500...5000 см2/г — около 18 %).

Адгезия — свойство одного материала прилипать к поверхности другого. Адгезия двух различных материалов зависит от природы материала, формы и состояния поверхности, условий контакта и т. д. Она появляется и развивается в результате сложных поверхностных явлений, возникающих на границе раздела фаз, и характеризуется прочностью сцепления при отрыве одного материала от другого. Важное значение адгезионные свойства имеют при получении композиционных материалов и изделий (бетонов разных видов, клееных изделий и конструкций, отделочных материалов).

Многие строительные материалы в процессе их изготовления и применения проходят стадию пластично-вязкого состояния (гипсовое, цементное, глиняное тесто, свежеприготовленные растворные и бетонные смеси, мастики, формуемые материалы из полимеров и т. д.). По своим физическим свойствам пластично-вязкие тела занимают промежуточное положение между жидкими и твердыми телами. Так тесто можно разрезать ножом (что нельзя сделать с жидкостью), но вместе с тем это же тесто принимает форму сосуда, в который оно помещено, т. е. ведет себя, как жидкость. Пластично-вязкие смеси характеризуют реологическими показателями — структурной прочностью, вязкостью и тиксотропией.

Структурная прочность — прочность внутренних связей между частицами материала. Ее оценивают предельным напряжением сдвига, соответствующим напряжению в материале, при котором он начинает течь подобно жидкости (от). Это происходит тогда, когда в материале нарушаются внутренние связи между его частицами — разрушается его структура.

Вязкость — способность материала поглощать механическую энергию при деформировании образцов. Когда пластично-вязкий материал начинает течь, напряжения в материале зависят уже от скорости его деформации. Коэффициент пропорциональности, связывающий скорость деформации и необходимое для этого напряжение, называют вязкостью ц (Па-с).

Модель упругопластично-вязкого материала можно представить себе как систему последовательно соединенных элементов: пружины (характеризует упругие свойства материала), груза, лежащего на плоскости (пластические свойства), и поршня, движущегося в цилиндре с маслом (вязкость). Если начать тянуть за пружину с возрастающей силой F, то сначала растягивается пружина, а остальные элементы остаются в покое (если силу убрать, система вернется к исходному состоянию). Когда сила F станет равной силе трения Fo, то вся система начнет двигаться. При этом, чтобы увеличить скорость движения, надо преодолеть возрастающее сопротивление масла в поршне, т. е. увеличить силу F.

Тиксотропия — способность пластично-вязких смесей обратимо восстанавливать свою структуру, разрушенную механическими воздействиями. Физическая основа тиксотропии — разрушение структурных связей внутри пластично-вязкого материала, при этом материал теряет структурную прочность и 'Превращается в вязкую жидкость, а после прекращения механического воздействия материал обретает структурную прочность. Явление тиксотропии используют при виброуплотнении бетонных и растворных смесей, при нанесении мастичных и окрасочных составов шпателем или кистью и т. д. вызвать его разрушение (коррозию). Степень разрушения зависит от многих факторов и прежде всего от состава материала и его плотности. Коррозионную стойкость оценивают химическим анализом.

При небольшом модуле основности, когда в неорганическом материале преобладает кремнезем, наблюдается высокая стойкость к кислотам. Когда в составе неорганического материала преобладают основные оксиды и модуль основности достаточно высок, то этот материал обычно нестоек к кислотам, но щелочами не разрушается. Органические материалы (древесина, битумы, пластмассы) при обычных температурах относительно стойки к действию слабых кислот и щелочной среды. Однако значительная часть строительных материалов не обладает достаточной стойкостью к действию агрессивной среды и требует специальной защиты от коррозии.